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Abstract

We develop a model in which firms set their salary levels before matching

with workers. Wages fall relative to any competitive equilibrium while prof-

its rise almost as much, implying little inefficiency. Furthermore, the best

firms gain the most from the system while wages become compressed. We

explore the performance of alternative institutions and discuss the recent

antitrust case against the National Residency Matching Program in light of

our results.
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A recent antitrust suit charges that the National Resident Matching Program

suppresses the wages of medical residents. The match, which uses a Gale-Shapley

procedure to assign seniors in medical schools to residency programs in various

medical specialties, was developed for efficiency reasons, and on that score it ap-

pears to do quite well.1 That is, the right residents appear to get assigned to

pretty much the right residency programs. But there is little doubt that for young

doctors who have just completed four years of medical school, salaries are both

low, averaging under $40,000 per year, and compressed, and work hours are long,

80 hours a week in many programs.2

We develop a model that shows why a market like the NRMP match is likely

to have the features described, namely good efficiency properties, salaries that are

below those in any competitive allocation, and severe compression in compensation.

The key elements are two: competition within the match is likely to be somewhat

localized, with hospitals basically competing against others like themselves, and

hospitals cannot easily make offers that discriminate among candidates. Neither of

these features alone would be sufficient to obtain our results, though the second by

itself would create very mild compression, but together they can have a significant

effect.

We consider a model in which both “hospitals” and “residents” are easily ranked

so there is no ambiguity about what constitutes an efficient match. This is the

cleanest case for our analysis; in other cases deriving our results would be easier.

Hospitals make offers, with the hospital that offers the highest wage getting the

best resident and so on. An analogy would be to a condominium auction where

1Alvin Roth and collaborators have written a fascinating series of papers documenting the

history of the match, the reasons for its success, and changes in its structure over time; key

references include Roth (1984), Roth and Xing (1994), and Roth and Peranson (1999). The

first theoretical study of matching algorithms is by Gale and Shapley (1962), who analyzed a

“deferred acceptance” procedure that is similar both to the procedure then used by the NRMP

and to the one currently in use. Their algorithm was extended to allow for endogenous price

determination in two important papers by Crawford and Knoer (1981) and Kelso and Crawford

(1982). Milgrom (2003) unifies and extends many of the central results in the literature.
2Recent discussions of the antitrust case include Chae (2003) and Miller and Greaney (2003).
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buyers make sealed bids and pay their own bids, with bidders receiving priority

in choosing units based on the rank order of their bids. The crucial feature is

the “all-pay” element to competition. A hospital will pay its offer regardless of

the resident it actually matches with; it cannot offer 5x for the obstetrical Barry

Bonds, but only x for the obstetrical Mario Mendoza.3

Were all hospitals symmetric in their distributions for the value of obtaining the

best residents this system would lead to the same average wages as a system with

discrimination, although it would create some fairly mild compression in salaries.

But the reality is that hospitals have a sense of where they stand, with more highly

ranked hospitals effectively competing for more highly ranked candidates. This,

combined with the all-pay feature, dampens competition.

In a competitive equilibrium the salaries of the residents will adjust so that each

hospital prefers to hire the resident who is its efficient match. The difference in

wages between two “adjacent” residents must be in the range between the amount

extra that the lower and higher of the firms with which they will match are willing

to pay for the superior worker. The surplus of the better hospital will exceed that

of the lower hospital by at least the difference in the value of the output of the two

firms with the lesser worker and at most the difference in the value of the output

of the two firms with the superior worker.

With price setting followed by matching, the expected surplus of the better

hospital will exceed that of the lesser hospital by more than the difference in

output with the superior worker.4 The reason is that the salary a hospital must

offer to obtain in expectation its appropriately matched resident is less than what

the hospital ranked just below it would have to offer to match in expectation with

the same resident. This is because the higher ranked hospital will, on average,

offer higher wages than the lower ranked hospital and therefore the higher ranked

hospital faces less stiff competition than the lower ranked hospital.5 Therefore, the

3Most readers will recognize Bonds as baseball’s greatest player over the past 15 years; Men-

doza is best known for his struggles in keeping his batting average above his weight; a standard

that has become known as the “Mendoza Line”.
4Actually, for the top two hospitals the differential will equal this output differential but in

all other comparisons the surplus comparison will be strict.
5To continue with our baseball analogy, the Yankees have an easier schedule than the Orioles

2



difference in the expected surplus of two adjacent hospitals reflects the maximum

differential in a competitive equilibrium, plus the savings from the lower wage that

the higher firm must pay relative to its near competitor to achieve its expected

efficient quality worker.

While this incremental surplus differential between two adjacent workers may

be small, it is cumulative: the surplus of a highly ranked hospital will exceed

its competitive surplus by at least the sum of all the incremental differentials

between the hospitals below it. So the highest ranked hospitals get the most

extra surplus. Of course the entire increase in surplus must come from wages

rather than increased productivity, since the competitive equilibrium is efficient.

In fact, given that its structure of pay-your-offer with asymmetric firms insures

that some inefficiency will creep into the match, resident wages will decline in

aggregate by more than the increase in hospital surplus. Because competition is

localized, however – hospitals may offer wages that match them with residents

a bit above or below their competitive match, but no one will offer a wage that

leads to a massively inefficient allocation – the inefficiency in the market will be

small. Finally, because it is the hospitals at the top who gain the most, and they

match with the best residents, it is the very best residents6 who have their salaries

reduced the most. This accounts for the compression in the wage distribution.7

While we frame the paper in terms of the NRMP match, we caution readers

not to take the example too literally: we do not construct the model with the

goal of making it the most realistic possible representation of that market. Rather

our goal is to make a set of points about markets like the NRMP that share

certain salient characteristics. In many professions (law, investment banking and

because they face all the same opponents except that the Yankees get to play the Orioles and

the Orioles must play the Yankees.
6Such as Jon’s wife Amy, whose long hours inspired his work on this topic.
7One might expect the average wage problem to be mitigated by entry, though compression

would still remain. In the resident market the accreditation process that also limits the size of

residency programs may effectively limit entry. One might also expect the compression problem

to be “relieved” in part by the exodus of high quality workers from the market. Mitigating this, a

residency lasts for a relatively small fraction of most doctors’ careers and part of the lower wages

that residents receive may return to older doctors, meaning that part of the effect of the system

may be a steepening of doctors’ experience-income profile, particularly for the best doctors.
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academic economics being three important examples though not necessarily in

that order) employers may reasonably conclude that it is in their interest to pay

the same wage to all incoming employees. Within firms the model is broadly

consistent with tournaments that allow the most talented workers to obtain the

most responsible jobs but receive a disproportionate share of the firm’s surplus.8

A final example involves the U.K. 3G spectrum auction. Auction designers had

to plan for the contingency that only four licenses, none quite identical to another,

would be available in a market with four incumbents. A concern was that in a

straight Vickrey (simultaneous multiple round) auction no entrants would think

they could outbid an incumbent and so prices would end up very low.9 On the other

hand, if one of the licenses were set aside for an entrant then one of the incumbents

would have to be excluded, which might be very inefficient. In order to encourage

entry while still making it possible that the four incumbents would ultimately

win Paul Klemperer, the principle auction theorist, proposed an “Anglo-Dutch”

design, which would have involved a conventional English ascending auction until

five bidders were left followed by a sealed bid final round. One possibility was that

after the final round the highest bidder would get first choice of the licenses, the

second bidder second choice, and so on.10

Had the U.K. gone this route, the problems facing the various bidders in a

sealed bid round would have been somewhat different. The new entrant might

have regarded it as unlikely, and probably undesirable, that it would pay enough

to get one of the larger licenses, but would hope that its bid would enable it to

defeat 1-2-1 or Orange, the two weaker incumbents. British Telecom and Vodafone,

8Within the context of our model one incentive for adopting such a pay mechanism, which

raises average compensation, is that in equilibrium it might help the firm attract more of the

most talented workers. But we have not pursued this analogy in any detail.
9Ultimately it was possible to create five licenses out of the available spectrum, assuring that

at least one new entrant would win a license and thereby guaranteeing competition. So ironically

an increase in the supply of licenses gave the designers confidence that prices would rise to

competitive levels (Binmore and Klemperer, 2002).
10Another possibility was that the top four bidders in the sealed bid round could have all been

guaranteed a license, the four then competing in a simultaneous multiple round auction for the

four specific licenses with a minimum bid on each license equal to the fourth highest bid in the

sealed bid round.
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on the other hand, might have been confident that they would be in the top four

and might be principally concerned with whether they ended up with one of the

biggest licenses. So the bidding would have contained an all-pay element like

that in our model, with the prediction that the expected premia for the biggest

licenses would be lower than in a Vickrey auction. Of course the primary reason

for adopting this procedure would have been to guarantee a market price for the

least expensive license, which in this case was much more important than achieving

market differentials in price among the various licenses.

The outline of the paper is as follows: In section 2 we present a numerical

example that illustrates the basic results in our model and an approach for solving

for equilibrium. Section 3 briefly describes the model itself and section 4 describes

hospitals’ equilibrium salary offers, which will be determined by mixed strategies.11

Sections 5 and 6 describe the competitive equilibrium, the high profits, and the

salary compression that the model produces. Section 7 explains why the market

has very good performance in terms of efficiency. Section 8 argues that while

some of the wage compression would occur in a symmetric model in which firms

are limited to one wage offer, most of the compression and all of the reduction

in average wages is due to the combination of the one wage restriction and the

asymmetry of the firms.

Section 9 discusses extending the model to permit more generalized preferences.

Section 10 describes the consequence of allowing personalized offers to residents,

concluding that each firm being able to offer only a small number of different

wages would make a big difference (assuming that equity considerations outside

the model would not prevent firms from doing this). Section 11 considers dynamic

competition, in which instead of all firms simultaneously offering a fixed wage they

are able to adjust their one wage offer as they observe the offers of the competition.

Section 12 concludes.

11Our interpretation of mixed strategies in this context is that when candidates visit hospitals

they learn about subtle changes in the program from the previous year that might not be known

to competitors, such as any increase in the number of nights on call that residents might expect

to work. These changes affect the attractiveness of a hospital’s compensation package and of

course make its desirability appear to competitors to have some randomness.
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Assume there are N firms (hospitals) 1, 2, ..., N , each interested in matching

with one worker (resident). The workers, also labeled 1, 2, ..., N are strictly in-

terested in maximizing their wage.12 Their reservation wage level is zero. Firms

are interested in maximizing the value of their output less the amount they pay

in wages. The value of the output of firm i if it matches with worker j is i · j,

so we refer to this example as the “multiplication game”. All this information is

common knowledge. Here we explicitly solve the example for N = 3.

The efficient match clearly puts worker 1 with firm 1, worker 2 with firm 2, and

worker 3 with firm 3, creating a total output of 14. In a competitive equilibrium

the salaries of the three workers must be such that they all want to work and, at

the given salaries, each firm prefers to hire the worker with whom it is matched.

Therefore the wage for worker 1 will be p1 ∈ [0, 1], so that firm and worker 1

will each get surplus from matching with one another; the wage for worker 2 will

be p2 ∈ [p1 + 1, p1 + 2] so that firm 2 but not firm 1 will be willing to pay the

increment needed to hire worker 2 instead of worker 1, and the wage for worker

3 will be p3 ∈ [p2 + 2, p2 + 3]. The lowest competitive wages for the workers are

therefore 0,1, and 3, which are the wages that they would earn if the market

cleared using a Vickrey auction. Similarly, at these wages the hospitals receive

their maximum competitive surpluses of 1,3, and 6.13

In our model of the match, each of the three firms simultaneously offers a wage

and a ranking of the workers into a computerized match system. The workers

observe the wages and then list a ranking of the firms. Each worker will rank the

firms from highest wage to lowest. Each firm will rank the best worker, worker

3, first, and worker 2 second. The match will then assign worker 3 to the firm

that has offered the highest wage, worker 2 to the firm with the second highest

wage, and worker 1 to the firm with the lowest wage. What we will show in the

12It is a simple generalization to make the number of firms and workers different. Excess

workers simply would not match, so they are irrelevant. Excess firms force the minimum wage

up to the minimum competitive equilibrium wage for the bottom worker who matches, and

therefore raise all wages by exactly that amount.
13Because of the symmetry of the problem the highest possible competitive wages are 1,3, and

6 and the lowest hospital surpluses are 0,1, and 3.
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context of this example is a set of results – sub-competitive average wages, wage

compression, and a high level of efficiency – that we generalize later in the paper.

In solving this example, we know immediately that firms will use mixed strate-

gies. With pure strategies the middle bidder would only want to offer a fraction

of a penny above the low bidder and the high bidder a fraction of a penny above

the medium bidder. But in that case both of the lower two bidders would benefit

by raising their bids to attract the top worker. The same logic implies that there

will be no “atoms” in firm strategies, except possibly at a salary of zero. We know

that zero must be the lowest salary offered; because a firm making the lowest offer

is sure to obtain the lowest worker, having the lowest offer be strictly positive is

inconsistent with profit maximization.14 What is more, every salary between zero

and the maximum must be potentially offered by at least two firms. If no firms

ever offer some range of salaries, it would be better to make an offer at the bottom

of this range than just above it. Similarly, if only one firm makes offers on some

range, it would always benefit by making offers at the bottom of the range. Finally,

we conjecture (and later prove) that each firm will randomize over an interval of

prices.

Therefore, the only real issue in solving for equilibrium is whether at the top

and bottom wages only two or all three firms are randomizing. To answer this

question we begin by assuming that all three firms are randomizing within a given

range, with densities or “quit rates” of q1, q2, and q3. For firm 1 to be indifferent to

quitting or not requires that q2 + q3 = 1. That is, the value of obtaining a worker

who is one level up is 1 to firm 1, so for it to be worth paying an extra ∆ in

wages it must raise the expected quality of its match by ∆ also, and the expected

increase in the quality of its match is just (q2 + q3) · ∆. Similarly, for firm 2 to

be randomizing q1 + q3 = 1

2
, since an expected increase in quality of 1

2
∆ is just

worth an extra payment of ∆ to firm 2, and for firm 3 q1 + q2 =
1

3
. Solving these

equations simultaneously yields a negative value for q1, which is not feasible.15 So

14To nail down this argument we must account for the possibility that some firms offer the

lowest salary with discrete possibility. There cannot be two firms with “atoms” at the bottom,

however, or one would want to bid a bit higher; and if there is just one, our argument applies to

this firm.
15The solution is q3 =

7

12
, q2 =

5

12
, and q1 =

−1

12
.
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only 2 and 3 will be randomizing at the top wage, and only 1 and 2 at the bottom.

It is easiest to solve the equilibrium from the top. At the highest wages only

firms 2 and 3 are randomizing, with densities q3 =
1

2
and q2 =

1

3
which are required

to make the other indifferent to the randomization. Because q3 =
1

2
> q2 the range

of wages over which 2 and 3 randomize must be from the maximum wage, call it

p, down to p− 2. Within the range [ p− 2, p] firm 3 will exhaust its total bidding

probability (a density of 1

2
times a range of 2).Firm 2, however, will exhaust only

2

3
of its probability (a density of 1

3
over a range of 2). This leaves firm 2 with a

probability mass of 1

3
to employ over a range in which it competes with firm 1.

In the range where 1 and 2 compete q1 = 1

2
and q2 = 1 to make the other

indifferent to quitting. Given 2’s quit rate and its available probability the length

of the range must be 1

3
. Since we know that the minimum wage must be zero this

means that 1 and 2 compete in a range of (0, 1
3
] and therefore 2 and 3 compete in

a range of [1
3
, 7
3
]. Multiplying its quit rate times the range in which it competes

only exhausts 1

2
· 1

3
= 1

6
of firm 1’s probability mass, which implies that it will bid

0 with probability 5

6
.

1/3

Firm 1:

Firm 2:

Firm 3:

7/30

1/2

1

1/3

Equilibrium in the Multiplication Game

The equilibrium can be summarized as follows, with comparison to the com-
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petitive equilibrium that is most favorable to the firms in parentheses:

Table 1. The Multiplication Game

Wages Profits

Worker 1 0.02 (0) Firm 1 1.00 (1)

Worker 2 0.73 (1) Firm 2 3.67 (3)

Worker 3 1.56 (3) Firm 3 6.67 (6)

Total 2.31 (4) Total 11.33 (10)

The key results that will hold more generally are that wages are reduced and

compressed but that the match is pretty efficient. In the example, almost four

fifths of the reduction in expected wages goes to increased profits, while one fifth

is deadweight loss. In the multiplication game with N = 16, 95 percent of the

reduced wages goes to profits; this ratio approaches 100 percent as the number of

matches rises. Relative to random assignment, the 3 person match captures 82

percent of the efficiency gain from competitive equilibrium; the 16 person match

more than 97 percent. As N increases, the expected wage of the bottom worker

will always increase slightly, but more highly ranked workers lose more and more.

In the three player game, virtually the entire wage reduction is borne by the top

worker; in the 16 worker game the average wage declines by 11.5 but the expected

wage of the best worker declines by 35.1.16

The profits results also generalize. The bottom firm always gets the same

expected surplus as in the firm-optimal competitive equilibrium or Vickrey auction.

Higher ranked firms get strictly more in expectation, with the very top two firms

getting the same gain.

Finally, the algorithm for solving this game is basically the one we use to solve

our general model. For example, in a five bidder “multiplication game” firms 3,4,

and 5 compete over the top range. The bottom of 5’s range is the top of 2’s range.

In the second range, then, 2,3, and 4 compete. When the bottom of 4’s range is

reached 1 will not find it profitable to compete with 2 and 3 (for exactly the same

16The percentage decline in wages in this example is slightly larger for higher ranked residents,

and this effect would obviously greater if the reservation wage were above zero. But the claim

we are making, and that we can show generally, is that the absolute decline in wages is largest

for the top residents.
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reason as in the three match game), so 2 and 3 will compete until the bottom of

3’s range. Then 1 and 2 compete at prices down to 0, and 1 exits with an atom at

a wage of 0. All firms exit at a constant rate within any given range.

3. T� M��	

Our general model has N firms and N workers. Each firm wants to hire a

single worker. Firm n’s surplus from hiring worker m is v(n,m) = ∆n ·m, where

∆N ≥ ... ≥ ∆1 ≥ 0. Each firm that hires a worker pays a salary. If firm n hires

worker m at a salary p, firm n’s net utility is v(n,m)− p, while worker m’s utility

is p. A firm or worker that fails to match receives zero utility. These preferences,

and the workers’ abilities, are commonly known to the firms.

Several points deserve emphasis. First, the model allows some or all of the

firms to have identical preferences. Nevertheless, the most notable results arise

when there is some asymmetry between firms. Second, the multiplicative form of

match surplus usefully simplifies the equilibrium, but is not essential. What is

important is that v is increasing in m, so that workers are ranked in terms of their

ability, and that v has increasing differences in n and m, so that firms are ranked

in terms of how they value talent.

Finally, we emphasize that although we model salaries as prices, we think of

a salary as broadly encompassing job features such as responsibility, hours and

training, in addition to financial compensation. That being said, it is still limiting

to assume that workers have homogenous preferences. We address this in Section

9.

The market unfolds in three stages. Each firm simultaneously makes a salary

offer. These offers are observed by the workers. Matching follows. Workers rank

firms by their offers, so the firm that makes the highest offer obtains the most able

worker, and so on. To resolve ties, we assume that if several firms offer the same

salary, matching is efficient – the firm with the highest value for talent gets the

preferred worker. Once matching occurs, each firm pays its worker the salary it

initially offered. In a pricing equilibrium, each firm chooses its offer to maximize

its expected surplus, taking into account the matching process and the strategies

of other firms.
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This section describes equilibrium salary offers. We start with the basic struc-

ture of the equilibrium, then proceed to the details. We defer a few technicalities

to the Appendix.

The equilibrium, as in our example, involves mixed strategies. A mixed strategy

for firm n is a distribution Gn, where Gn(p) is the probability that n offers a

salary less than or equal to p. We let gn denote the density for firm n’s offer

distribution. As argued in the example, no firm can offer a price above zero with

discrete probability. Also, standard arguments imply that in equilibrium each firm

must randomize over an interval of prices.

We first establish the key qualitative feature of the equilibrium: higher ranked

firms make (stochastically) higher offers.

Lemma 1 If ∆n ≥ ∆m, then in equilibrium firm n makes higher offers than firm

m in the sense of first order stochastic dominance; for all p, Gn(p) ≤ Gm(p).

Proof. Consider the returns to firm n to offering p + dp rather than p. The

benefit is the expected increase in worker quality, equal to ∆n ·
∑
k �=n gk(p) · dp.

The cost is the additional salary dp. Now compare this to the returns to firm

m < n. Because ∆m ≤ ∆n, the only way firm m could have a greater (or even

equal) incentive to make the higher offer is if gn(p) ≥ gm(p). Now suppose that

in equilibrium firm nmakes offers over some interval [p′, p′′]. Since firm n prefers

offering p′′ to any higher price and gn(p) = 0 above p′′, firm mmust also prefer p′′

to any higher price. Between p′ and p′′, firm n is indifferent. This means that if

firm ḿ’s offer interval overlaps with firm n’s, then for any price p offered by both

firms, gm(p) ≤ gn(p). Below p′, firm n never makes offers, but firm m might. If

follows that 1−Gn(p) ≥ 1−Gm(p) for all p, establishing the claim. Q.E.D.

The logic behind Lemma 1 is that offering a higher salary attracts a more

qualified worker (at least in expectation), but the higher salary must be paid

regardless. Firms that care more about quality focus more on the benefit and

make higher offers. If two firms are symmetric, so ∆n = ∆m, then they use the

same equilibrium strategy. But if ∆n > ∆m, then n uses a strictly higher strategy:

11



Gn(p) < Gm(p) for all p between the lowest price offered by m and the highest

offered by n.

The monotonicity property means that, in equilibrium, firms make offers over

staggered price intervals. This basic structure is depicted in Figure 2.

Price
Firm 1

Firm 2

Firm N

Firm N-1

Figure 2: Price Supports

Now consider the “head-to-head” competition that occurs at some given price

p. If p is offered in equilibrium, it is offered by a consecutive set of firms l, ..., m.

Each of these firms must be just indifferent to changing its offer slightly away from

p. So for each n = l, ..., m,

∆k ·
∑

k �=n

gk(p) = 1.

By solving this system of equations, we obtain the firms’ offer densities at p.

For each firm n = l, ...,m:

gn(p) =
1

m− l

m∑

k=l

1

∆k

−
1

∆n

≡ qn(l,m). (1)

Conveniently, the offer densities depend on the set of firms competing, but not on

p.17 Taking advantage of this, we define qn(l,m) to be firm n’s offer density given

17This is where the linear form of the surplus function comes into play: the incremental benefit

to getting worker 3 rather than 2 is the same as from getting 2 rather than 1.
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firms l, ...,m are competing. Note that qn(l,m) is increasing in n; that is, higher

firms “drop out” at a faster rate.

Our next Lemma resolves the question of which firms compete head-to-head.

Lemma 2 If firmm is the the highest-ranked firm that offers p, then firm l(m), ...,m

all offer p, where:

l(m)≡min {l : ql(l,m)>0} . (2)

So if firm m is the highest ranked firm to offer p, we can write each firm n’s offer

density at p as qn(m), where qn(m) ≡ qn(l(m), m) if l(m) ≤ n ≤ m, and qn(m) ≡ 0

otherwise.

With these preliminaries, we can provide an algorithm to describe equilibrium

behavior. We will let pN+1 denote the highest salary offered, and pn denote the

lowest salary offered by firm n.

As in our earlier example, the algorithm starts at the top. On the interval

below pN+1, firms l(N), ..., N compete head-to-head; and each firm’s offer density

is given by qn(N). Now, because qN(N) ≥ qn(N) for all n, firm N will “use up”

its offer probability below pN+1 faster than other firms. So this top interval will

have length 1/qN(N). Or, letting pN denote the lowest price offered by N ,

qN(N) · (pN+1 − pN) = 1.

What happens just below pN? Provided that the firms are not all identical,

lower-ranked firms will have residual offer probability that is not used up between

pN and pN+1. Suppose for instance that ∆N−1 < ∆N . Then below pN , firms

l(N − 1), ..., N − 1 compete head-to-head; and each firm’s offer density is given by

qn(N − 1).

More generally, suppose firmsm+1, ..., N “use up” their offer probability above

pm+1, but firm m does not. Then between pm and pm+1, firms l(m), ..., m compete

head-to-head; and each firm’s offer density is given by qn(m). Firm m will use up

its offer probability at its lowest offer pm. By recursion,

∑

n≥m

qm(n) · (pn+1 − pn) = 1.
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Given a starting point pN+1, this process continues until we have specified the

behavior of firms 2, ..., N . At this point, there are two possibilities. If ∆1 = ∆2,

then firms 1 and 2 must use identical strategies, so we have also specified firm 1’s

behavior. If ∆1 < ∆2, then firm 1 has some residual probability, so it offers the

lowest price with discrete probability equal to:

G1(0) = 1−
N∑

n=2

q1(n) · (pn+1 − pn).

In either case, the lowest price offered by the two lowest firms must be zero, so

p1 = p2 = 0. Given this, we complete the derivation by adding up the differences

pn+1 − pn to obtain the highest price pN+1.

Proposition 1 There is a unique pricing equilibrium. Letting qn(·) and p1, ..., pN+1

and G1(0) be defined as above, then for each firm n, and each non-empty interval

[pm, pm+1], gn(p) = qn(m) for all p ∈ (pm, pm+1].

Figure 3 illustrates the equilibrium offer distributions with five firms (using

multiplication game payoffs). Only two firms mix concurrently over the lowest

range of prices, but more than two firms may mix over higher ranges of prices.

Indeed the “pool size” is increasing over the price range.18

p
3

Firm 1:

Firm 2:

Firm 3: Firm 5:

Firm 4:

p
4

p
5

p
6

0

0

1

18In general, the “pool size” increases over the price range provided that ∆n is concave in n

(or at least less convex than an exponential curve xn).
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Figure 3: Equilibrium with Five Firms

Interpreting the Mixed Strategies

A concern with any mixed strategy equilibrium is how to interpret the pre-

dicted behavior. In reality, it seems unlikely that hospitals randomize their offers

to residents. A more appealing view is that mixing captures strategic uncertainty

inherent in the competition between the firms. For instance, suppose that hospi-

tals alter their programs each year for a wide variety of private reasons. Residents

observe these changes when they interview, but competing programs do not. Un-

der appropriate assumptions, behavior in such a world will be non-random, but

observationally equivalent to the equilibrium we have described (Harsanyi, 1974).

5. C���������� E�	�
����

In the model, as in the residency match, firms make salary offers prior to

matching. An alternative would be to negotiate salaries in the process of matching.

This section describes the competitive equilibria that might arise from an idealized

form of negotiations and relates them to the Vickrey auction.

A competitive equilibrium is a matching of firms and workers, with correspond-

ing salaries, that satisfies two conditions. First, it is individually rational; each

firm and worker get at least zero utility. Second, it is stable; no firm and worker

can benefit from leaving their matches to form a new match at a freely negotiated

salary.

There are a range of competitive equilibria. Each involves efficient matching,

but salaries vary. To see why, suppose that firm 1 hires worker 1 at an individually

rational salary p1 ∈ [0,∆1]. Firm 2 must pay worker 2 enough that firm 1 is not

tempted to hire worker 2, but not so much that firm 2 wants to hire worker 1.

Any salary p2 ∈ [p1 + ∆1, p2 + ∆2] serves this purpose. More generally, stability

requires that for each n, pn − pn−1 ∈ [∆n−1,∆n].

This puts a bound on competitive equilibrium salaries. Firm n must pay at

least pFn =
∑
k<n∆k, but not more than pWn =

∑
k≤n∆k. From the firms’ perspec-

tive, the best competitive equilibrium has salaries pF1 , ..., p
F
N ; the worst has salaries

pW1 , ..., pWN .
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In this regard, the Vickrey auction provides a useful benchmark. If firms bid

for workers in a Vickrey format, the outcome is efficient matching with “firm-best”

salaries pF1 , ..., p
F
N . So each firm’s Vickrey profit provides an upper bound on what

it could expect in any competitive equilibrium.19 Similarly, each worker’s Vickrey

salary provides a lower bound on her competitive equilibrium salary.

6. P������ �� S
����

This section compares firm profits and worker salaries in our model to compet-

itive equilibrium profits and salaries. We obtain three main results. First, each

firm’s equilibrium profit is at least as large as its Vickrey profit. Second, worker

salaries are lower in aggregate than their Vickrey salaries. Finally, worker salaries

are compressed: relative to competitive equilibrium, the worst worker may benefit

from the pricing and matching system, but salaries at the top are reduced.

We start with firm profits. Let Πn(p) denote firm n’s expected profit if it offers

p and other firms use their equilibrium strategies:

Πn(p) ≡ ∆n ·

1 +

∑
k �=n

Gk(p)


− p.

If firm n offers p, it expects to attract a worker quality of 1 +
∑
k �=nGk(p) and to

pay p.

Firm n’s equilibrium profit Πn is equal to Πn(p) for any p in the support of n’s

equilibrium strategy. In contrast, firm n’s Vickrey profit is equal to:

Vn = ∆n · n−
∑
k<n

∆k.

These two profits are exactly equal for the lowest ranked firm. In equilibrium,

firm 1 is willing to offer zero and receive the lowest worker with certainty, so

Π1 = Π1(0) = ∆1. Similarly V1 = ∆1.

To compare profits more generally, we consider the profit differential between

adjacent firms. Let p̂n denote the price such that if firm n offers p̂n, its expected

19Note that in the Vickrey outcome, each worker receives less that her marginal contribution

to social surplus; pF
n

is less than worker n’s marginal contribution p
W
n
.
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worker quality is n, its Vickrey quality. Such a price must exist in n’s offer region:

when n makes its highest offer, it expects to beat all firms k < n with certainty

and obtain at least worker n; on the other hand, when n makes its lowest offer, it

expects to lose to all firms k > n with certainty and obtain no better than worker

n. So p̂ must lie between these two extremes. Moreover, firm n− 1 must also offer

p̂n, or else n would expect quality strictly greater than n when it offered p̂n.

The difference in equilibrium profits between firms n and n − 1 is Πn(p̂n) −
Πn(p̂n). Substituting and re-arranging:

Πn − Πn−1 = (∆n −∆n−1) · n+∆n−1 · [Gn−1(p̂n)−Gn(p̂n)] .

The first term is exactly Vn − Vn−1, the difference in the Vickrey profits of n and

n−1. The second term, which is always non-negative, arises from the fact that firm

n− 1 makes lower offers in equilibrium, so its competition is tougher. The second

term is strictly positive whenever∆n > ∆n−1 and p̂ < p. So Πn−Πn−1 ≥ Vn−Vn−1

and the inequality is typically strict.

So equilibrium profit and Vickrey profit are the same for the lowest firm, but

if ∆2 > ∆1, firm two’s equilibrium profit is strictly higher than its Vickrey profit,

and the same is true for every firm n > 2. Moreover, if ∆n+1 > ∆n, the gap

increases for firms 3,4, and so on. The gap does not increase at the very top.

Instead, the difference in equilibrium profits between the top two firms coincides

with the Vickrey differential. This occurs because p̂N = p, and Gn(p) = 1 for all

firms.

We summarize as follows.

Proposition 2 All firms have expected equilibrium profits greater than their Vick-

rey profits. Moreover, the difference cumulates: the lowest firm has no profit

change, while the highest firm sees the biggest increase.

The key force is that low ranked firms are less aggressive in equilibrium than

high ranked firms. So firm n not only derives greater value from a given worker

that firm n − 1, it also expects, conditional on offering a given salary, to receive

a better worker. This generates a larger profit differential between firms than in

a Vickrey auction, where n’s extra profit relative to n− 1 is just the difference in

their values for a given worker.
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Now consider the workers’ perspective. Because there is mixing, firms and

workers may not be efficiently matched. So the expected equilibrium surplus is

less than the efficient competitive equilibrium surplus. Because firm profits are

higher, worker salaries must be lower in the aggregate.

Not every worker is necessarily worse off. The worst worker expects a non-

zero salary in equilibrium. This improves on her Vickrey salary of zero (though it

may or may not be lower than her highest possible competitive salary). For the

best worker, however, even her highest possible equilibrium salary falls below her

Vickrey salary. We will provide some quantitive examples in the next section to

show that the difference (equal to ΠN − VN) is often very large.

Proposition 3 The aggregate surplus that accrues to workers in equilibrium is

strictly less than in any competitive allocation. Moreover, wages are compressed;

the worst worker does better and the best worker does worse than under competition.

Propositions 2 and 3 generalize easily to the case where match surplus is not

simply multiplicative. Suppose that firm n’s value for workerm is given by v(n,m),

where v is increasing in m and has increasing differences in (n,m). (Recall that

v has increasing differences if for all m′ > m, v(n,m′) − v(n,m) is increasing in

n.) This specification includes the multiplicative case v(n,m) = ∆n ·m, as well as

cases where firms have increasing or decreasing returns to worker quality. We show

in the Appendix that the qualitative features of the equilibrium are preserved in

this more general model and establish the following result.

Proposition 4 Suppose firm values are given by v(n,m), where v is increasing in

m and has increasing differences in (n,m). Then equilibrium firm profits exceed

Vickrey profits, while equilibrium worker salaries are less than Vickrey salaries on

aggregate and more compressed.

7. L��
 C���������� �� E���������

This section examines market efficiency. Low-ranked firms may outbid higher-

ranked firms in equilibrium, but because firms compete “locally” against similar
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opponents, the inefficiency this creates is limited. Relative to competitive equi-

librium, there is far more redistribution of surplus than loss of surplus. This is

noteworthy from an antitrust standpoint because an institution that creates market

power may be justified if it generates substantial efficiency gains.

To expand on this point, we approximate market efficiency and firm profits.

Two simplifications prove useful for this purpose. First, we focus on the case where

firms’ valuations are uniformly distributed, with∆n = n/N2.20 The normalization

means that the surplus frommatching the highest worker and firm is always 1, while

the bottom match has a value approaching 0 as N increases. Second, we focus on

markets with a “large” number of firms (though we provide some numerical results

below for small N).

We first address the extent to which competition is local. It turns out that the

number of higher-ranked firms that a given firm n could conceivably outbid – the

“pool size” of firm n – is roughly
√
2n.

Lemma 3 Suppose ∆n = n/N2. If ρ(n) ≡ l−1(n)− n, then ρ(n) ≈
√
2n.

Now consider the efficiency loss in equilibrium. The social cost from firm n

displacing firm m > n by one place is ∆m −∆n. So relative to an efficient assign-

ment, the loss from an equilibrium assignment is the cost generated by all such

displacements, weighted by the probability that they occur. Thus,

I(N) =
N−1∑
n=1

N−n∑
k=1

(∆n+k −∆n) · Pr [n beats n+ k] .

Our pool size result bounds this expression. Because firm n cannot beat any

firm greater than n + ρ(n), and cannot beat any higher-ranked firm with more

than 1/2 probability:

I <
1

2

N−1∑
n=1

ρ(n)∑
k=1

k

N 2
≈ 1

2

N−1∑
n=1

∆n ≈
1

4
.

This bound is rough in that it assumes n beats every firm between n + 1 and

n + ρ(n) with probability 1/2. Our numerical results suggest substantially less

20Our approximations generalize, with similar conclusions, provided that 1/∆
n
is convex in n.
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inefficiency, though of the same order of magnitude.21

Now consider the magnitude of re-distribution. From the previous section, we

know that

Πn − Vn =
n−1∑
m=1

∆m · [Gm(p̂m+1)−Gm+1(p̂m+1)] .

Our pool size result suggests that, in a large market, the bracketed term is approx-

imately 1/ρ(m). Thus

Πn − Vn ≈
n−1∑
m=1

∆m

ρ(m)
≈ 1

3
∆nρ(n).

This already provides a rough sense of equilibrium wage compression. In a

market with N firms and workers, with ∆n = n/N 2, the competitive equilibrium

salary of worker N is at most 1

2
+ 1

2N
and at least the Vickrey salary of 1

2
−

1

2N
. In contrast, the highest salary that could possibly be offered to worker N in

equilibrium is precisely N −Πn. The difference between these salaries is ΠN −VN .

It follows from our approximation that N ’s equilibrium salary is depressed by at

least
√
2/3

√
N . Furthermore, the expected salary of the top worker will of course

be less than the maximum possible, by approximately
√
N/(

√
N − 1).

To identify the aggregate gain to firms in equilibrium, we sum the excess profits

for each firm. Then,

E(N) =
N∑
n=1

(Πn − Vn) ≈
1

15
ρ(N)3 ≈ N1/2

5
.

Of course, the fall in aggregate salaries is just E(N) + I(N).

Relative to competitive equilibrium, profits rise and salaries fall by an order

of magnitude more than the change in total surplus. In this sense, equilibrium

generates far more re-distribution than inefficiency. As a rough benchmark for

calibrating the size of these effects, note that the total surplus at stake, i.e. the

surplus difference between an efficient matching and random assignment, is:

S(N) =
N∑
n=1

∆n ·
(
n− N + 1

2

)
≈ N

12
.

We summarize the discussion in the following Proposition.

21Indeed, it appears I is closer to 1/25. This is what we get by assuming n beats n+ k with

probability 1

2
· (1− k/ρ(n))2.
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Proposition 5 Suppose that ∆n = n/N2. Then when the market is sufficiently

large, the inefficiency of the market is approximately of order o(1), excess profits

are of order o(N 1/2) and market surplus is of order o(N).

As the market becomes very large, equilibrium becomes approximately efficient

in the sense that virtually 100% of the total possible surplus is realized. Indeed, in

the limiting case when firm values and worker qualities are continuously distrib-

uted, there is a pure strategy equilibrium with Vickrey prices.

It is perhaps useful to calibrate the magnitude of our results. Table 2 pro-

vides some calculations. To avoid decimals, we assume firm values are distributed

between 0 and 100/N (i.e. ∆n = 100n/N2), rather than between 0 and 1/N .22

Table 2. Numerical Calculations

N 5 10 50 100 500 1000

Surplus at Stake 40 83 417 833 4167 8333

Excess Profits 25 48 144 218 527 759

Inefficiency 4 4 3 3 3 3

The first row shows the surplus at stake, or the difference between the surplus

generated by efficient matching and random assignment. This grows at rate N .

The second row is the aggregate difference between equilibrium profits and Vickrey

profits. In small markets, this is a large fraction of the surplus at stake (about

25% with 100 firms), and is still significant in a large market (about 10% with 1000

firms). The last row shows the loss of efficiency from equilibrium matching. The

efficiency loss is nearly 10% of the surplus at stake with five firms, but it drops off

rapidly. By the time there are 100 firms, the equilibrium efficiency loss is roughly

0.5%.

As discussed above, the gains and losses are largest at the top. With 100 firms,

the top firm expects a profit of 55.2 in the match and 50.5 in the Vickrey auction,

a 9.3 percent gain. The top worker expects a wage of 49.5 in the Vickrey auction.

In the match, her maximum possible wage is 44.8. Her expected wage is 43.9, an

22Note that this is equivalent to assuming that both firm and worker values are uniformly

distributed between 0 and 10 (so ∆
n
= 10n/N and worker qualities are 10m/N).
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11.2 percent loss relative to Vickrey. The top firm’s gain is more than twice that

of the average firm. The top worker’s wage is depressed two and a half times the

amount of the average worker.

8. T�� R��� �� N����	
���������

It is tempting to attribute our results entirely to the fact that firms do not

target their salaries offers. On this account, firms are less aggressive because they

must make offers without knowing precisely whom they are hiring. This argument

is incomplete, however. While nondiscrimination does generate salary compression,

it cannot on its own account for an aggregate reduction in salaries. Rather, it is

the combination of the salary-setting process and asymmetries between firms that

depresses competition.

It is perhaps easiest to see this in the context of an example. Imagine two

worlds. In the first, firms draw their values independently and privately from a

uniform distribution on [0, N + 1]. In the second, firm values are drawn without

replacement from {1, 2, ..., N}. The latter is our multiplication game model.

The environments are parallel in the following sense. In both, the expected

value of the top firm is N , the expected value of the second firm is N−1, and so on.

Moreover, the Vickrey allocations are identical in expectation. The nth firm has

expected value n, matches with worker n, and pays the sum of the lower valuations,

equal in expectation to
∑

n−1

k=1
k. Given this, we denote aggregate expected surplus,

profits and wages in the Vickrey auction by S, V and W .

Now consider what happens if the firms set salaries simultaneously, with the

best worker going to the top offer and so on. In the first case, firms have symmetric

beliefs about the values of their competitors. There is a symmetric pure strategy

equilibrium, in which each firm makes an offer that depends monotonically on its

value for quality. Expected salaries are compressed relative to the Vickrey auction:

worker N expects a lower salary in equilibrium than in a Vickrey auction,23 while

worker 1 expects a positive salary under the match and a zero salary under the

23In the Vickrey auction, conditional on any top signal, the top firm will pay its expected

Vickrey cost conditional on its being the highest ranked firm. In the match, conditional on the

same signal, the firm will pay its unconditional expected payments in a Vickrey auction, averaging
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Vickrey auction. Nevertheless, because firms with higher values make higher offers,

equilibrium is efficient. The expected surplus is again S. Moreover, the Revenue

Equivalence Theorem implies that a firm with value ∆ expects precisely the same

profit in equilibrium as it does in a Vickrey auction. So aggregate firm profits and

worker salaries are given by V and W in expectation.

In contrast, with asymmetric firms, the match leads to worker salaries that are

significantly lower in aggregate and substantially compressed relative to the Vick-

rey allocation. Also, market surplus is lower. Thus, the combination of nondiscrim-

inatory pricing and asymmetry are what generate a departure from competitive

outcomes. This situation is summarized in Table 3.

Table 3. Asymmetry and Nondiscrimination

Symmetric Firms Asymmetric Firms

Vickrey Match Vickrey Match

Market Surplus S S S < S

Firm Profits V V V � V

Worker Salaries W W W � W

Salary Compression No Some No Yes

We can connect this in a slightly more precise way to auction theory in the

following way. The Vickrey auction is essentially a “second-price” environment,

where to get a worker firms have to pay just enough to outbid their next competitor.

In contrast, the match has an “all-pay” flavor. Auction theory tells us that the

symmetric Vickrey and match auctions will both yield the same average profits for

each type of firm. Therefore, average wages must be unchanged as well and the

scope for compression is limited. In contrast, in an asymmetric match, equilibrium

behavior leads to progressively greater expected profits for the more highly ranked

in the lower costs it will have in cases where it is outbid for the top worker(s). This amount will

clearly be lower in the independent values case. The symmetric equilibrium is for a firm with

value ∆ to offer p(∆) = 1

2

N−1
N

(∆2). If ∆1 and ∆N are the first and N th order statistics, workers

1 and N expect salaries p(∆N ) and p(∆1). A small amount of algebra shows that the expected

highest offer is N(N−1)
2

N+1
N+2 , which is less than N(N−1)

2 , the expected Vickrey salary for worker

N . For the bottom worker the Vickrey salary is zero while the expected symmetric all-pay salary

would be N−1
N+2 .
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firms, and therefore to progressively lower wages for the workers with whom the

better firms match. What is remarkable is the degree of redistribution in the model

relative to the very small amount of inefficiency.24

9. G������ P����������

This section discusses extending our model to permit more general preferences.

Two aspects of the model are natural to investigate. First, we assume workers care

strictly about salary. Even if one takes a broad view of salaries as encompassing

non-financial aspects of compensation, it is likely that idiosyncratic preferences of

residents play a role in the residency labor market. Second, we assume firms hire

a single worker. In practice, hospitals hire a cohort of residents each year, as do

firms in many other entry-level labor markets.

Heterogeneous Worker Preferences

Suppose workers to have heterogeneous preferences over firms, so that worker

m’s utility from a match with firm n is pn + unm. The new issue is that from the

workers’ perspective, firms are now “differentiated products.”25 If the shocks are

uncorrelated with the value of the match (as might be the case with “geographical”

preferences) then standard pricing theory intuition is that this differentiation will

increase the market power of each hospital and relax competition. The basic logic in

that firms will try to exploit their market power over workers who idiosyncratically

prefer them by lowering their offers; and in equilibrium salaries will be lower across

the board.

While we do not have general results to this end, it seems roughly consistent

with a number of examples we have worked out. An additional subtlety is that a

24Baye, Kovenock and de Vries (1993) make another interesting observation about asymmetric

all-pay auctions, which is that revenue (here wages) may actually increase if a high value bidder

is excluded. They consider a single-unit auction, but their point would also apply here.
25One case that does not lead to new issues is if workers have the identical cardinal preferences

over firms. For instance, suppose every worker gets direct utility un from matching with firm

n. Then firm n can offer pn − un and rather than pn and the equilibrium we have considered is

preserved.
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new source of inefficiency may arise. If firm n makes a low offer targeted at some

worker m that has a preference for n, then if for some reason n fails to attract m

(either other firms happen to make better offers or because m’s preference for n

isn’t as great as n expected), then n may be unable to attract any other worker

with its offer. The possibility that positions will end up vacant generates a new

source of inefficiency.

A second type of heterogeneous preference might be that better students might

be willing to pay more to match with a better hospital than will less good students.

An extreme case might be to reverse the asymmetry in our model and imagine that

the hospitals are only interested in paying the lowest possible wage for a worker,

while the value of a match of worker i to hospital j might be i ·j plus the residency

wage, less the reservation utility. In this case workers will receive their Vickrey

wages and utilities, with the top firms extracting their share of the rents by paying

the lowest wages.

An intermediate case of interest is where the value of a match was α · n · m
plus a constant and minus the wage to the hospital and β · n · m plus the wage

minus a constant to the residents, β ≥ α. Further assume that there is a legal

minimum wage which is high enough to insure that even the lowest worker would

accept a match with the lowest quality hospital. Then it is an equilibrium for

every hospital to offer the minimum wage. In this case workers would do well

in utility terms – certainly better than their Vickrey utility and perhaps better

than in any competitive equilibrium – but we would still observe a compression

in “non-prestige” compensation.

Multiple Hires

Allowing firms to hire multiple workers is easily accomodated in our model if

each firm wants to hire the same number of workers, say k. Then the firm that

makes the highest offer gets workers N,N − 1, ..., N −k+1, the next offer attracts

N − k, ..., N − 2k + 1, and so on. This model is strategically equivalent to a

single worker per firm model where the quality of successive workers is (k + 1)/2,

(3k + 1)/2, (5k + 1)/2,... rather than 1, 2, 3, ....26

26This extension assumes surplus is additive across workers. Nondiscriminatory pricing can
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If firms have different numbers of jobs, the nondiscriminatory nature of pricing

works to the advantage of small firms. To see this, suppose there is a firm of size

5 and another of size 10. By beating the larger firm, the small firm realizes a total

gain in worker quality of 50. The large firm realizes the same gain by beating

the small firm. But the small firm pays only half as much for increasing its offer.

This gives it a greater incentive to make aggressive offers. This issue may not be

empirically relevant if firms of a given quality tend to be of similar size, for example

if the top residency programs are larger and the lesser programs are all smaller.

10. P���	���
��� O�����

In the context of the residency market, and in many other markets, it is natural

to think of firms as making a single offer and hoping to attract the best match.

Nevertheless, we would like to know what happens if firms make personalized offers

prior to matching. We now show that this restores competitive equilibrium.

Suppose firms compete by simultaneously making offers to each worker. Let

pnm denote the salary that n offers to worker m, and let pn = (pn1, ..., pnN).

Salary offers induce worker and firm preferences. A potential difficulty is that

these preferences need not be identical, so matching is more complex. We assume

that given offers p1, ...,pN , the matching process results in a stable assignment of

workers to firms.27 Suppose that firms understand this matching process. A set

of offers is then an equilibrium if no firm could change its offer and increase its

expected profit.

One equilibrium involves each firm making two non-zero offers. Each firm n

offers workers n and n + 1 their respective Vickrey salaries pF
n
and pF

n+1. Firm N

makes a single offer to worker N. Given these offers, the only stable matching is

efficient and firms make Vickrey profits. Moreover, no firm can do better. Firm n

cannot lower its offer to worker n without losing her to firm n− 1. And obtaining

have significantly negative consequences if, for example, firms value having a few superstars. The

problem is that they have no way of making a few special offers to attract these candidates.
27Here the notion of stability is with respect to the fixed prices p1, ...,pN . That is, an as-

signment is stable if there is no firm n and worker m, who would prefer to leave their current

partners and match at the salary pnm.
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worker m �= n would require offering m at least pFm, giving n less than her Vickrey

profit.

While this is not the only personalized offer equilibrium, all others share the

same outcome. We prove the next result in the Appendix.

Proposition 6 With personalized offers, every equilibrium yields efficient match-

ing and Vickrey profits and salaries.

In theory, if other firms make only a single offer, a firm could benefit by making

some personalized discriminatory offers. Yet participants in the residency match

report that personalized contingent offers are quite uncommon. One reason may

be that pre-match agreements are discouraged by NRMP rules: “...both applicants

and programs may try to influence decisions in their favor, but any verbal or

written contracts prior to the submission of Rank Order Lists is a violation of the

Match” (NRMP Policies, Section 8.0).

Even in the absence of market rules limiting discrimination, however, there are

reasons – concerns about fairness or internal equity, for instance – to believe

firms may prefer offering similar compensation to entry-level workers. Law firm

associates and consulting firm analysts are an example of this. So even if hospitals

were permitted to make contingent personalized offers to prospective residents,

they might not do so extensively, or for some period of time.

11. D������ C���	
�
���

Our model assumes that firms make offers with no knowledge of the offers

being made by other firms. While independent salary decisions may be a good

assumption in some markets, in others one might argue that the salary-setting

process is dynamic, so that firms have some ability to respond to competing offers.

We now explore this possibility.28

28Kamecke (1998) also proposes a dynamic model of salary setting prior to a centralized match.

The key features of his model are that there is no “last date” for matching opponents’ offers,

and also some scope for personalized offers off the equilibrium path. In our context, his salary

setting process would result in efficient matching and all workers receiving zero salary.

27



Suppose first that firms set salaries through an ascending price auction. Prices

start at zero and increase over time. At any point a firm may “drop out” and fix

its offer at the current level. The process stops once every firm fixes its salary.

With ascending prices, there is an equilibrium that results in efficient match-

ing. This equilibrium involves all firms offering a zero salary, but dropping out in

sequence. In this equilibrium, each firm believes that all higher firms will stay in

until it drops out. This belief is justified because all firms also believe that what-

ever has happened, lower ranked firms are always just on the verge of dropping

out.

This equilibrium is only one of many, however, and efficiency is not guaranteed.

Indeed, precisely the same logic can be used to construct an equilibrium where all

firms drop out immediately in any arbitrary order! There are also many inefficient

mixed strategy equilibria. These have an interesting war of attrition flavor; and in

some, firms may even do worse than in the Vickrey auction.

As an example, suppose there are two firms and two workers. Consider an

equilibrium as follows. From the outset, Firm 1 drops out at a rate 1/∆2 and firm

2 at a rate 1/∆1. In this equilibrium, Firm 1 makes an expected profit equal to

∆1; Firm 2 expects ∆2, a profit strictly less than its Vickrey profit of 2∆2 −∆1.

With more firms, the possibilities expand. One possible equilibrium with three

firms is for Firm 1 to drop out from the outset at rate 1/∆2 and Firm 2 at a rate

1/∆1. Once one firm, say 2, drops out, Firm 3 starts dropping out at a rate 1/∆2

and Firm 2 decreases its drop-out rate to 1/∆3. In this equilibrium, both Firms 2

and 3 have expected profit below their Vickrey surplus.

Proposition 7 With ascending prices, there are both efficient and inefficient sub-

game perfect equilibria. Some of these equilibria involve firms making profits lower

than their Vickrey profits.

On the other hand, if firms set salaries through a descending price auction, the

outcome is always efficient. Specifically, suppose prices start as some very high

level. As time progresses, firms simultaneously lower their prices. At any point

a firm may drop out, fixing its offer. The process terminates once all firms fix

their prices or alternatively if prices reach zero. The next result is proved in the

Appendix.
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Proposition 8 With descending prices, the unique subgame perfect pricing equi-

librium results in efficient matching and Vickrey prices.

A third model of dynamic price setting supposes that firms set prices in some

pre-specified sequential order. In some cases, this leads to efficient matching at

Vickrey prices. For instance, this occurs if firms set prices in descending order,

starting with Firm N and ending with Firm 1. More generally, however, sequential

price offers can result in inefficient matching. For example, suppose that there are

three firms and three workers and that firm 2 makes the first offer, followed by

firms 1 and 3.29 If ∆1 +∆2 > ∆3, the subgame perfect equilibrium involves Firm

2making an offer p2 = ∆3 + ε. Given such an offer, both Firms 1 and 3 will offer

zero. The result is that Firm 2 ends up with the most talented worker and Firm 3

with the second most talented. In this example, each worker ends up with a salary

below his Vickrey salary. We suspect, but have not proved, that this is a general

property of sequential offer games.

12. C��������

This paper has studied matching markets where firms compete by setting prices

prior to matching. The “all-pay” nature of competition leads to greater prof-

its, with the highest quality firms benefiting the most. The implication is that

wages are both reduced and compressed, with the compression far beyond the

mild amount that will occur in all-pay competition among symmetric firms with

the same expected distribution of quality.

Our analysis has implications for the National Residency Matching Program,

among other markets. While the NRMP was established to solve a different set

of timing problems, and while there are compelling arguments for its efficiency

benefits, an unintended byproduct of the match may be to depress resident welfare

by discouraging competition between hospitals.

29We thank Peter Coles for this example.
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This appendix fills in the details omitted from Section 3. We derive the equi-

librium and prove uniqueness in a series of steps.

1. (No Atoms) No equilibrium distribution Gn can have an atom at p > 0.

Proof. Suppose firm m offers p > 0 with discrete probability. Then no firm

n �= m could optimally make an offer in a small interval below p, say the interval

[p− ε, p) and no firm n < m will offer p. But then firm m could not be optimizing

since it could achieve a strictly higher payoff by offering p− ε rather than p.

2. (No Aggregate Gaps) In equilibrium at least two firms offer each p between

the minimum offer 0 and maximum p.

Proof. If there was an interval where only one firm was active, this firm could

not be optimizing. If there was an interval where no firms were active, then the

lowest ranked firm active just above this interval could not be optimizing.

3. (Aggregate Offers) If G1, ..., Gn is an equilibrium, then
∑
n gn(p) is non-

increasing in p.

Proof. Let J be the set of firms that make offers just below p. Then in order

that these firms be willing to make offers just below p, it must be the case that

for each j ∈ J ,
∑
n�=j gn(p

−) ≥ ∑n�=j gn(p
+). Summing over this inequality over all

firms in J implies that
∑

n gn(p
−) ≥ ∑n gn(p

+).

4. (No Gaps) Each equilibrium distribution Gn has interval support.

Proof. Suppose to the contrary that n makes offers just below p′ and just

above p′′ but not in the interval (p′, p′′). Because n is optimizing, it must be the

case that for any p in this interval:

∆n ·
∑
m�=n

[Gm(p)−Gm(p
′)] ≤ p− p′.
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with equality when p = p′′. Since n does not make offers in this interval, the above

Lemma implies that
∑

m�=n gm(p) is non-increasing in this interval. This implies

that for any p in the gap,
∑

m�=n gm(p) =
1
∆n

. Now, since n does make offers just

above p′′, it must also be the case that
∑

m�=n gm(p) = 1
∆n

for all p just above

p′′. But then gn(p) = 0 just below p′′ and gn(p) > 0 just above p′′ means that∑
m gm(p) is equal to

1
∆n

just below p′′ and is strictly greater than 1
∆n

just above

p′′, contradicting the previous Lemma.

5. (Monotonicity) If G1, ..., GN is an equilibrium, and n > m, then Gn(p) ≤
Gm(p) for all p.

Proof. Established in the text.

6. (Price Distribution) Suppose that in equilibrium, firms l, ..., m offer p. Then

for each n = l, ..., m,

gn(p) =
1

m− l

m∑
k=l

1

∆k
− 1

∆n
.

Proof. Established in the text.

7. (Supports) If pm < p is the highest offer made by some firm m, it must be

lowest offer of some firm n > m.

Proof. Suppose that firms m+1, ..., n are active just above pm andm, ..., n are

active just below pm. Then result 6 above implies that the aggregate offer rate just

below pm is: 1
n−m

∑n
k=m

1
∆k

and just above is 1
n−m−1

∑n
k=m+1

1
∆k

. The latter is strictly

greater contradicting the fact that the aggregate offer rate be non-increasing.

8. If m is the highest firm making offers on some interval, l(m) is the least.
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Proof. By monotonicity, the set of firms making offers is consecutive. If

l < l(m), then clearly l, ...,m cannot be active since then gl(p) < 0 on this interval

– a contradiction. If instead l, ...,m are active where l > l(m), then for any p

in this interval,
∑

n gn(p) >
1

∆l(m)
. Since the aggregate offer rate does not include

l(m) above pl(m) and is non-increasing, it follows that l(m) would do strictly better

by offering a price in this interval or at the top of it than by offering pl(m).

Proof of Proposition 1. We show that the conjectured strategies are the unique

equilibrium. Suppose they are used by each firm m �= n. Then on the interval

where gn(p) > 0, the aggregate density of opponent offers is 1/∆n by construction.

So n is indifferent between all offers in this region, the interval (pn, pn = pl−1(n)].

If p < pn, the aggregate density of opponent offers is strictly greater than 1/∆n,

so offering pn is strictly preferred to a lower offer. And if p > pn the aggregate

density of opponent offers is strictly less than 1/∆n, so offering such a high price

cannot be optimal. So it is optimal for n to use the equilibrium strategy. In terms

of uniqueness, it is quite easy to see that the maximum and minimum offers for

each firm are uniquely pinned down as in the text. Q.E.D.

A��	���� B: O��

	� P����

Proof of Proposition 4. Let G1, ..., Gn be equilibrium strategies. Arguments

similar to the above establish that these strategies have no atoms or gaps, and

that if n > m, then Gn(p) ≤ Gm(p) for all p. The proof now follows the earlier

argument for the linear case. By an analogous argument, V1 = Π1 = v(1, 0). Now,

note that

Vn − Vn−1 = v(n, n)− v(n− 1, n).

The difference in the Vickrey profits of n and n− 1 is the difference in their value

for worker n. Define p̂n as the price that solves:

Πn(p̂n) = v(n, n)− p̂n.

Such a price exists in the support of n’s equilibrium strategy because at the lowest

price n offers, n gets at best worker n (and potentially lower) and at the highest
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price n offers, n gets at worst worker n (and potentially higher), and because Πn(·)
will be continuous in p. Moreover, n− 1 must also offer p̂n, and when it does, the

distribution of worker quality it expects is worse than the distribution n expects

in the sense of first order stochastic dominace. So,

Πn −Πn−1 > v(n, n)− v(n− 1, n) = Vn − Vn−1,

completing the proof. Q.E.D.

Proof of Lemma 3. By the definition of l(·),

(ρ− 1)
1

∆n−ρ
≥ 1

∆n−ρ+1
+ ....+

1

∆n
≥ (ρ− 1)

1

∆n−ρ+1

Moreover, so long as 1/∆n is convex in n:

ρ
1

2

(
1

∆n−ρ+1
+

1

∆n

)
≥ 1

∆n−ρ+1
+ ....+

1

∆n
≥ ρ

1

∆n−(ρ−1)/2
.

Combining these inequalities and re-arranging:

ρ(∆n−(ρ−1)/2 −∆n−ρ) ≥ ∆n−(ρ−1)/2

ρ(∆n −∆n−ρ+1) ≤ 2∆n

Substituting for ∆n and re-arranging gives

ρ2 + 2ρ− 1 ≥ 2n ≥ ρ2 − ρ.

From here, it is easy to show that
√
2n+1 > ρ >

√
2n− 1, so ρ(n) ≈ √

2n.Q.E.D.

Proof of Proposition 6. Note that any firm can ensure itself a profit of at least

∆n by setting all its offers to zero. Now fix an equilibrium and suppose that in

equilibrium worker n is assigned to firm kn. Since k1 must make at least ∆k1,

pk11 = 0. Moreover, to ensure that k1 would not want to bid away worker 2,

pk22 ≥ ∆k1; by this same argument, pkn+1(n+1) − pknn ≥ ∆kn. Since each firm n’s

profits must be at least∆n, it follows that kn = n for all n and matching is efficient.

Moreover, in equilibrium p11 = 0 and more generally pnn ≥ pFn , so firms 2,...,n get

no more than their Vickrey profits. In fact, pnn = pFn . To see this, note that firm
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2 can ensure itself its Vickrey profit by setting p21 = 0 and p2k = (k− 1)∆1. With

this offer, regardless of the offers of firms n �= 2, any stable matching will involve

Firm 2 matched to a higher worker than Firm 1. Thus firm 2 gets it Vickrey profit

in equilibrium and p22 = ∆1. Given p11, p22, Firm 3 can ensure at least its Vickrey

profit by setting p31 = 0, p32 = ∆1 and p3n = (n− 2)∆2 +∆1. So p33 = ∆1 +∆2.

Continuing the argument for firms 4, ..., n completes the proof. Q.E.D.

Proof of Proposition 8. Consider some subgame perfect equilibrium and sup-

pose it results in worker n going to firm kn at a price pkn . As firm k1 can obtain its

same match, worker 1, by decreasing its price to zero, pk1 = 0 and k1’s equilibrium

profits are ∆1. Since k1 also could have dropped out just above pk2 and obtained

at least worker 2, pk2 ≥ ∆k1. By a similar argument, pkn+1 − pkn ≥ ∆kn. From

here, it is easy to see that because any firm n could ensure profits ∆n by decreasing

its price to zero, the only assignment consistent with equilibrium is that kn = n.

Finally, we have seen that p1 = 0. Because firm 1 will not drop out above ∆1

in order to secure worker 2, firm 2 must optimally set p2 = ∆1. Continuing this

argument shows that pn =
∑

k<n∆k for each n. Thus if each firm n drops out

at pFn , no firm has an incentive to deviate; also, no other strategies are consistent

with equilibrium.30 Q.E.D.
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